Automatic Smoothing for Poisson Regression
نویسنده
چکیده
Adaptive choice of smoothing parameters for nonparametric Poisson regression (O’Sullivan et. al., 1986) is considered in this paper. A computable approximation of the unbiased risk estimate (AUBR) for Poisson regression is introduced. This approximation can be used to automatically tune the smoothing parameter for the penalized likelihood estimator. An alternative choice is the generalized approximate cross validation (GACV) proposed by Xiang and Wahba (1996). Although GACV enjoys a great success in practice when applying for nonparametric logisitic regression, its performance for Poisson regression is not clear. Numerical simulations have been conducted to evaluate the GACV and AUBR based tuning methods.We found that GACV has a tendency to oversmooth the data when the intensity function is small. As a consequence, we suggest tuning the smoothing parameter using AUBR in practice. Email: [email protected] 2
منابع مشابه
به کارگیری بیز تجربی در تهیه نقشه جغرافیایی بروز بیماری سل در استان مازندران طی سالهای 90-1384
Background and purpose: Due to the increasing information about illnesses and deaths, classified map is of appropriate methods for analyzing this type of data. Standardized infection rates are commonly used in disease mapping but had many defects. This study aimed to compare the Poisson regression models and empirical Bayes models to prepare geographical map of tuberculosis incidence in Mazanda...
متن کاملAutomatic Smoothing and Variable Selection via Regularization
This thesis focuses on developing computational methods and the general theory of automatic smoothing and variable selection via regularization. Methods of regularization are a commonly used technique to get stable solution to ill-posed problems such as nonparametric regression and classification. In recent years, methods of regularization have also been successfully introduced to address a cla...
متن کاملAnalysis of Mortality Data using Smoothing Spline Poisson Regression
We study a smoothing spline Poisson regression model for the analysis of mortality data. Being a non-parametric approach it is intrinsically robust, that it is a penalized likelihood estimation method makes available an approximate Bayesian confidence interval and importantly the software gss, its implementation on the freely available statistical package R, makes it easily accessible to the us...
متن کاملPenalized spline smoothing in multivariable survival models with varying coefficients
The paper discusses penalised spline (P -spline) smoothing for hazard regression of multivariable survival data. Non-proportional hazard functions are fitted in a numerically handy manner by employing Poisson regression which results from numerical integration of the cumulative hazard function. Multivariate smoothing parameters are selected by utilizing the connection between P -spline smoothin...
متن کاملUse of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کامل